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Abstract

Spatial omics technologies provide rich insights into biological processes by jointly
capturing molecular profiles and the spatial organization of cells. The resulting
high-dimensional data can be naturally represented as graphs, where Graph Neural
Networks (GNNs) offer an effective framework to model interactions in the tissue.
Self-supervised pretraining methods such as Bootstrapped Graph Latents (BGRL)
and GRACE leverage graph augmentations to build invariances without costly la-
bels. Yet, the design of augmentation strategies remains underexplored, particularly
in the context of spatial omics. In this work, we systematically investigate how dif-
ferent graph augmentations affect embedding quality and downstream performance
in spatial omics. We evaluate a suite of existing and novel augmentations, including
transformations tailored to biological variation, across two representative tasks:
unsupervised domain identification in healthy tissue and supervised phenotype
prediction in cancer tissue. Our results show that carefully chosen augmentations
substantially improve performance, whereas poorly aligned or overly complex aug-
mentations may fail to help or even degrade performance. These findings highlight
the central role of augmentation design in enforcing meaningful invariances for
graph contrastive pretraining in spatial omics.

1 Introduction

Spatial omics technologies measure molecular profiles, such as RNA or protein expression, while
preserving the spatial context of cells in their natural environment. This modality provides a more
comprehensive view of cellular behavior, biological processes, disease mechanisms, and therapeutic
responses compared to non-spatial single-cell methods [1]]. Spatial transcriptomics platforms like mul-
tiplexed error-robust fluorescence in situ hybridization (MERFISH) [2], spatially-resolved transcript
amplicon readout mapping (STARmap) [3], Xenium [4]], and barcode in situ targeted sequencing
(BaristaSeq) [I5]] use microscopy or in situ sequencing to generate spatial maps of RNA expression.
Complementary proteomics methods such as imaging mass cytometry (IMC) [[6] and co-detection by
indexing (CODEX) [7] measure protein abundances with spatial resolution.

The complex and high-dimensional data produced by these technologies can be naturally represented
as graphs, where nodes correspond to cells and edges encode spatial proximity or molecular similarity
[8]. To exploit all available information from spatial omics data, graph-based methods like graph
neural networks (GNNs) often exhibit superior characteristics compared to traditional analysis
methods not taking spatial dependencies in the data into account [9} [10]. GNNs are well-suited
to analyze spatial omics data, as they explicitly model relationships between cells through graph
structures using a message-passing mechanism [9].

*Equal contribution.

This work was accepted at the NeurIPS 2025 Workhop on Unifying Representations in Neural Models (archival,
PMLR) and the NeurIPS 2025 Workshop on New Perspectives in Advancing Graph Machine Learning (non-
archival).



Pretraining enables GNNs to learn generalizable patterns from data before fine-tuning them for
specific tasks. Self-supervised or unsupervised pretraining methods are especially valuable in
biological contexts, where labeled data can be scarce and expensive [[11]. Moreover, these approaches
can introduce inductive biases, for instance via graph augmentations, that help models prioritize
biologically relevant features and improve robustness [[12].

A central principle of contrastive self-supervision is that it enforces invariance to augmentations:
two different views of the same input are trained to have similar embeddings. Early works such as
SimCLR [13]] and its follow-ups demonstrated the effectiveness of this paradigm in computer vision
by treating augmented images as positives and enforcing representation consistency. Subsequent
methods like BYOL [14]] removed the need for explicit negatives while still relying on augmented
views to build invariances. The choice of augmentations defines the invariances learned by the model,
in line with the InfoMin principle that views should remove nuisance factors but preserve task-relevant
information [[15]. Recent work has shown that in graph domains, augmentations explicitly inject
desired invariances, such as robustness to node/edge perturbations or feature corruption [12}[16].

Several pretraining frameworks have operationalized these ideas in the graph setting. Deep Graph
Contrastive Representation Learning (GRACE) [16] builds invariance to structural and feature
perturbations via an InfoNCE-based contrastive loss. Bootstrapped Graph Latents (BGRL) [[17]
achieves similar invariances without negative samples, relying instead on online—target encoder
consistency. Both methods demonstrate that invariances induced by carefully chosen augmentations
significantly enhance representation quality and downstream performance. While recent benchmarks
such as scSSL-Bench [18]] have evaluated self-supervised learning in a biological context across
diverse single-cell omics modalities, spatial omics remains underexplored. Most existing applications
of GNNSs to spatial omics adopt generic augmentations from other domains or do not leverage
augmentation at all [8} (19, 20].

This project explores how different graph augmentation strategies affect the quality of node and
graph embeddings in spatial omics data. We investigate both existing graph augmentations, identified
through a review of methods for general and spatial omics graphs, as well as newly designed aug-
mentations that encode biologically meaningful inductive biases. Their effectiveness is evaluated
on two representative downstream tasks in spatial omics: unsupervised domain identification on
healthy tissue and supervised phenotype prediction in cancer samples. These tasks differ not only in
supervision regime but also in biological complexity: domain identification on healthy tissue empha-
sizes stable spatial compartments, while phenotype prediction on cancer tissue must contend with
tissue heterogeneity and noisy clinical labels [21H23]]. By systematically benchmarking augmentation
strategies within contrastive pretraining frameworks, we aim to quantify how different invariances
influence downstream performance. To our knowledge, this is the first systematic investigation of
graph augmentations in spatial omics, introducing novel biologically motivated transformations that
explicitly encode inductive biases such as cellular plasticity and spatial measurement variability.

2  Methods

Figure [1| provides a schematic overview of our study design. Graph augmentations (baseline and
advanced) are applied to input graphs, models are pretrained using BGRL and GRACE, and evaluated
on two downstream tasks: domain identification and phenotype prediction. The following subsections
describe each component in detail.

Notations A graph is denoted by G = (X, A), where X € RV*F is the node feature matrix
with N nodes and F features per node, and A € RV*¥ is the binary adjacency matrix. Graph
augmentations generate a new view G = (5(, A) by modifying X, A, or both. Optionally, node
positions can be encoded in a spatial matrix P € RN*4, typically with d = 2, yielding P after
augmentation.

2.1 Baseline augmentations

Two baseline augmentations were used: DropFeatures and DropEdges. Models trained with these
augmentations served as baselines for performance comparisons. All augmentation hyperparameters
were tuned on validation sets over fixed ranges (see Section in the Appendix).
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Figure 1: Overview of the evaluation procedure. Graph augmentations (baseline and advanced)
are applied to input graphs. Models are pretrained using the BGRL and GRACE frameworks, then
evaluated on two downstream tasks: domain identification and phenotype prediction.

DropFeatures randomly masks features by setting entries in X to zero with probability p, resulting

in X while keeping A unchanged. If X contains a cell type feature, it is masked by setting entries to
the numeric code of the "unassigned" type.

DropEdges randomly removes edges from A with probability p (Bernoulli sampling), resulting in A
while keeping X unchanged.

2.2 Advanced augmentations

Advanced augmentations include both published and novel methods. These were tested individually
and in combination to assess their effect on downstream tasks relative to baseline augmentations.

DropImportance masks node features and removes edges based on importance scores. Inspired by
prior work [24] 23], it is controlled by dropout rate x and threshold A,,. Node importance is derived
from log-degree centrality:

1 _ log(1 + deg;) — d 0
‘ max; log(1 + deg;) — d’

where deg; is the degree of node 7 and d is the mean log-degree. The node feature drop probability is
pi =min((1—I™) -, Ap). 2)

Edges are ranked by the mean importance of their endpoints,

1) = 3 + 1), 3
normalized, and dropped with probability
pig = min((1 = I) - . ). 4)

This encourages invariance to the removal of less informative node features and edges.
SpatialNoise adds Gaussian noise to spatial positions:
Pi=pite, €~N(00). (%)

This models experimental imprecision in cell localization and enforces invariance to small spatial
perturbations. This augementation is applicable only to tasks with spatial coordinates (domain
identification).



FeatureNoise adds Gaussian noise to node features:
ii = X; + €;, €; NN(O,UQI). (6)

This simulates variability in molecular readouts and enforces robustness to minor fluctuations in
expression.

SmoothFeatures applies a convex combination of each node’s features with the mean of its neighbors:
xi=(1—-a)x;+a- \Nl(z‘)\ Z X, @)
JEN(3)
where « € [0, 1] controls the smoothing strength. This simulates transcript leakage [26] and enforces
invariance to local feature diffusion. This augementation is used only for domain identification.

PhenotypeShift randomly mutates discrete cell-type features ¢; according to a transition map M:
. Ja with probability 1 — p, ®)
sample(M|c;])  with probability p,

where M|c¢;] C C contains plausible phenotype alternatives. This models both plasticity (cell-
type switching) and misclassification noise, training robustness to annotation uncertainty. This
augementation is used only for phenotype prediction. Details of M are dataset-specific.

2.3 The task of domain identification

The first task employed to evaluate augmentations is unsupervised Domain Identification. The
objective is to detect and segment spatially coherent regions within healthy tissue based on molecular
data (e.g., gene expression) and spatial data (e.g., spatial relationships). These regions, or domains,
ideally reflect biologically relevant structures such as tissue compartments or functional zones.

2.3.1 Data

We used three spatial transcriptomics datasets with expert domain annotations, obtained via the
benchmarking study of Schaub et al. (2025) [27]. Dataset details are summarized in Tablem

Table 1: Datasets used for the domain identification task.

Dataset Technology Samples  Cells

1 MERFISH 5 28,317
2 STARmap 4 4,397
3 BaristaSeq 3 5,257

Dataset 1 profiles 5 mouse brain samples via MERFISH [28]]. Dataset 2 contains STARmap data
from mouse cortex [3], with expert annotations by Li and Zhou (2022) [29]. Dataset 3 comprises
BaristaSeq samples of mouse cortex tissue [30]. All datasets are publicly available [31].

2.3.2 Pipeline and model

An overview of the domain identification pipeline is shown in Figure 2] Each sample is prepro-
cessed into a graph, passed through a GCN encoder pretrained with BGRL or GRACE with spatial
regularization, and clustered into domains using the Leiden algorithm [32].

Data preprocessing and graph construction Each sample is first preprocessed using a sequence
of filtering and normalization steps. Genes are filtered based on the number of cells they are detected
in, and cells are filtered based on the number of genes they express. Cells lacking domain annotations
are removed. Raw gene expression values are then normalized to a target sum of 10 counts per cell,
log-transformed, and scaled to unit variance and zero mean. Principal Component Analysis (PCA) is
subsequently applied to the processed expression matrix.

Following preprocessing, one spatial omics graph is constructed per sample. Each cell is represented
as a node, with the top 50 principal components (PCs) serving as node features. Nodes are connected
to their k nearest neighbors in Euclidean space, with edge weights uniformly set to 1. The number of
neighbors k is optimized during hyperparameter search.
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Figure 2: Domain identification pipeline. Each sample is preprocessed into a graph, passed through
a GCN encoder pretrained with BGRL or GRACE and spatial regularization, and clustered into
domains via the Leiden clustering method.

Model and training A two-layer Graph Convolutional Network (GCN) is used to compute node
embeddings for each sample-specific graph. The network is trained in a self-supervised manner using
both the BGRL and GRACE frameworks.

To encourage spatial coherence in the learned representations, a spatial regularization term is added. It
penalizes high similarity in the embedding space for nodes that are spatially distant. This discourages
long-range spurious similarities. The resulting overall loss function is defined as:

£lotal = ESSL + “spatial N2 Z D(S) (1 - DE,ZJ))? (9)

,J

where D( *) denotes the normalized Euclidean distance between cells i and 7, and D( #) denotes the
normahzed distance between their embeddings in the latent space. The regularlzatlon strength is
controlled by the hyperparameter ~spagial-

Self-supervised training is conducted across all data samples. For model selection and evaluation, the
dataset is split into 40% validation and 60% test samples. Hyperparameters such as learning rate and
spatial regularization strength are optimized using a validation-based hyperparameter search. The
model is trained using the Adam optimizer with a cosine annealing learning rate scheduler.

All experiments were run on a cluster with NVIDIA RTX 4090 GPUs (24GB) and 6-core CPUs, with
up to 16GB RAM per job. Each training and evaluation run had a runtime of up to 30 minutes.

Clustering To obtain the final domain assignments for each node, the learned node embeddings
are clustered using the Leiden algorithm [32]. The resolution parameter of the Leiden clustering is
dynamically adjusted to match the number of ground truth domains in each sample. The resulting
predicted domain labels are then evaluated against the ground truth annotations using clustering
quality metrics (see Section[A.5]in the Appendix). Metrics are calculated per sample and averaged
across the validation or test set to report the overall performance. All reported means and standard
deviations are computed over 5 independent runs with different random seeds.

2.4 The task of phenotype prediction

The second task used to evaluate augmentations is supervised Phenotype Prediction in human non-
small cell lung cancer (NSCLC) tissue. The objective is to predict biological or clinical phenotypes
directly from spatially resolved molecular data. Here, we predict cancer relapse after treatment. A
detailed description of the data, model, and evaluation strategy for this task is provided below.



2.4.1 Data

The data used for phenotype prediction consists of one non-small cell lung cancer (NSCLC) spatial
proteomics dataset obtained by imaging mass cytometry [33]]. Marker expression was quantified
with 45 metal-labeled antibodies in 1071 patients with at least 15 years follow-up, resulting in 1868
cancer samples. Each sample includes clinical annotations, for instance smoking status, cancer stage,
relapse, clinical outcome, or cancer subtype. The raw data can be downloaded from the resource
provided by Cords et al. (2024) [33]].

2.4.2 Pipeline and model

The phenotype prediction pipeline is based on SPACE-GM [8]]. An overview of the pipeline is shown
in Figure 3]
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Figure 3: Phenotype prediction pipeline. Tissue graphs are built from omics data, subgraphs
extracted, passed through a GIN encoder pretrained with BGRL or GRACE, and classified with an
MLP.

Data preprocessing and graph creation Graphs were constructed from segmented cells using
Delaunay triangulation. Node features included cell type (integer-encoded) and cell size. Edge
features consist of a binary “near/distant” category based on centroid-to-centroid distance, using
a threshold of 20 pm, reflecting the typical size of human cells. From each tissue graph, h-hop
subgraphs were extracted (h = 3 by default).

Model and training An L-layer Graph Isomorphism Network (GIN) with edge-feature extension
[8]] was used, where messages are defined as

m{t) = hH +eff) (10)

VU

with 65,2 mapped via an embedding lookup. Subgraph embeddings were obtained by max-pooling

over final-layer node embeddings. The encoder was pretrained with BGRL and GRACE. For
classification, a 3-layer MLP was added and jointly fine-tuned with a weighted BCE loss.

All experiments were run on a cluster with NVIDIA RTX 4090 GPUs (24GB) and 16-core CPUs,
with up to 96GB RAM per job. Each training and evaluation run had a runtime of up to 4 hours.

Splits and optimization Pretraining used all samples without labels. For supervised fine-tuning,
1492 samples were used for training and 376 for evaluation, with evaluation split 50% validation
/ 50% test. Splits were stratified by relapse, and all samples from a patient were assigned to the
same fold. The performance was evaluated against the ground truth patient labels using standard
classification quality metrics (see Section [A.4]in the Appendix). Hyperparameters were tuned on
the validation set. All reported means and standard deviations are computed on the test set over 5
independent runs with different random seeds.



3 Results

3.1 Unsupervised domain identification in healthy mouse brain tissue

We first evaluated the effect of augmentations on the task of identifying structurally or functionally
distinct domains in healthy mouse brain tissue. Baseline models were trained with DropFeatures and
DropEdges, and compared against models with advanced augmentations or their combinations. The
Noise augmentation denotes the joint application of SpatialNoise and FeatureNoise. Performance
was measured using normalized mutual information (NMI), homogeneity (HOM), and completeness
(COM).

Results with BGRL and GRACE are shown in Tables 2] and 3] Under BGRL, DropImportance
improved NMI from 0.61 (baseline) to 0.66, with the next-best performance achieved by combining
all augmentations (0.65). Under GRACE, DropImportance again achieved the best result (0.66
compared to 0.65 baseline), and was the only augmentation regime that substantially improved over
the baseline. Across both frameworks, Droplmportance provided the most consistent gains. With
BGRL, nearly all augmentation regimes improved upon the baseline, whereas in GRACE the gains
were smaller because the baseline was already comparatively strong.

Table 2: Performance on domain identification task using BGRL. Clustering performance on
healthy mouse brain tissue using different augmentation strategies. Reported as mean + standard
deviation across 5 random seeds. The best and second-best results by mean are highlighted.

Augmentations NMI HOM COM

Baseline 0.6145 £0.0195 0.6188 £ 0.0234 0.6121 £ 0.0175
Baseline + Noise 0.6488 = 0.0083  0.6419 £ 0.0093  0.6576 + 0.0074
DropImportance 0.6585 £ 0.0033  0.6552 £ 0.0065 0.6635 £ 0.0008

Droplmportance + Noise

SmoothFeatures

DropImp. + Noise + SmoothFeat.

0.6488 + 0.0166
0.6497 £ 0.0065
0.6540 £ 0.0104

0.6507 £ 0.0135
0.6465 £+ 0.0097
0.6507 £+ 0.0110

0.6498 £+ 0.0217
0.6538 £+ 0.0061
0.6579 £ 0.0103

Table 3: Performance on domain identification task using GRACE. Clustering performance on
healthy mouse brain tissue using different augmentation strategies. Reported as mean =+ standard
deviation across 5 random seeds. The best and second-best results by mean are highlighted.

Augmentations NMI HOM COM

Baseline 0.6470 = 0.0081 0.6475 £ 0.0081 0.6484 £+ 0.0110
Baseline + Noise 0.6405 £ 0.0221  0.6390 £ 0.0157  0.6438 £ 0.0271
Droplmportance 0.6639 + 0.0056 0.6569 £ 0.0082 0.6726 £ 0.0046
DropImportance + Noise 0.6477 £0.0125 0.6409 £+ 0.0120 0.6557 £ 0.0127
SmoothFeatures 0.6460 = 0.0100 0.6423 £ 0.0115  0.6509 £ 0.0085
DropImp. + Noise + SmoothFeat. 0.6412 + 0.0058 0.6336 £ 0.0050 0.6502 + 0.0080

Qualitative results of the models trained using BGRL are shown in Figure {4 for a representative
MERFISH sample. Different augmentation strategies produce visibly different domain segmentations,
broadly consistent with the quantitative metrics.

Overall, domain identification highlights how augmentations can improve unsupervised discovery
of spatial structure in healthy tissue. To complement this, we next evaluate phenotype prediction,
a supervised task in noisy and heterogeneous human cancer tissue. Together, these tasks represent
distinct regimes, unsupervised and supervised, as well as healthy and cancerous tissue, which help
reveal when particular augmentations are most beneficial.

3.2 Supervised phenotype prediction in human cancer tissue

We evaluated augmentation strategies on relapse prediction in NSCLC samples, with performance
measured by F1 score and AUROC (Tables[]and[5). Models were trained with baseline augmentations
(DropFeatures and DropEdges) and compared against advanced augmentations. In PhenotypeShift,



SmoothFeatures

Baseline DropImportance

o AT "%

Ground Truth

Figure 4: Predicted and ground-truth domains in MERFISH tissue. Visualization of a representa-
tive mouse brain sample. The left-most panel shows expert-annotated ground truth; remaining panels
display predicted domains under different augmentation strategies. Augmentations strongly influence
segmentation quality, broadly consistent with the quantitative results.

we incorporated biologically motivated cell state transitions, including tumor adaptation to hypoxia,
fibroblast subtype plasticity, and T cell differentiation into regulatory, exhausted, or proliferative states,
while also accounting for myeloid—neutrophil annotation noise (see Section[A.6]in the Appendix).

Under BGRL, the baseline achieved F1 = 0.59 and AUROC = 0.60. FeatureNoise improved AUROC
to 0.61, while DropImportance alone decreased performance. The best F1 was obtained with
PhenotypeShift (0.64), while the best AUROC was achieved by FeatureNoise (0.61). Combining all
augmentations yielded intermediate gains (F1 = 0.62, AUROC = 0.60).

Under GRACE, the results showed similar patterns. The best F1 score was obtained with DropImpor-
tance + FeatureNoise (0.63), while the best AUROC was achieved with Baseline + FeatureNoise
(0.59). The second best scores were achieved using PhenotypeShift both in terms of F1 score (0.63)
and AUROC (0.59). Adding all augmentations together did not improve over single strategies. Over-
all, these results indicate that for phenotype prediction in cancer, both noise-based and biologically
motivated augmentations may improve performance, but combining them provides only limited
additional benefit, if at all.

Table 4: Performance on phenotype prediction task using BGRL. Relapse prediction in NSCLC
samples using BGRL pretraining with different augmentation strategies. Reported as mean =+ standard
deviation across 5 random seeds. The best and second-best results by mean are highlighted.

Augmentations F1 Score AUROC

Baseline 0.5896 + 0.0213  0.5986 £+ 0.0142
Baseline + FeatureNoise 0.6265 £+ 0.0155  0.6084 £ 0.0097
DropImportance 0.6171 £ 0.0245 0.5848 + 0.0031
DropImportance + FeatureNoise 0.6277 £0.0011  0.5665 + 0.0106
PhenotypeShift 0.6375 + 0.0090 0.6006 + 0.0098
DropImp. + FeatNoise + PhenotypeShift 0.6218 £ 0.0291  0.6030 + 0.0100

4 Discussion

We systematically evaluated the role of graph augmentations in self-supervised GNN pretraining
for spatial omics, using both BGRL and GRACE [16] across two tasks: domain identification
and phenotype prediction. The results show that augmentation choice has a decisive impact on



Table 5: Performance on phenotype prediction task using GRACE. Relapse prediction in NSCLC
samples using GRACE pretraining with different augmentation strategies. Reported as mean +
standard deviation across 5 random seeds. The best and second-best results by mean are highlighted.

Augmentations F1 Score AUROC

Baseline 0.6157 £0.0125 0.5759 £ 0.0194
Baseline + FeatureNoise 0.6208 £+ 0.0142  0.5932 £ 0.0090
DropImportance 0.6137 £0.0355 0.5707 + 0.0074
DropImportance + FeatureNoise 0.6338 + 0.0052 0.5545 +0.0122
PhenotypeShift 0.6318 4+ 0.0096 0.5897 +£ 0.0167
DropImp. + FeatNoise + PhenotypeShift 0.6070 = 0.0409  0.5870 £ 0.0088

downstream performance. In line with prior contrastive learning work [13H15]], we find that well-
aligned augmentations can enhance representations by encoding task-relevant invariances, whereas
overly strong or misaligned transformations can degrade performance.

Domain identification benefited most from structural perturbations, with DropImportance improving
performance by removing structurally redundant nodes and edges. In contrast, phenotype prediction
showed limited gains from structural perturbations and instead improved with noise-based and
biologically motivated augmentations such as FeatureNoise and PhenotypeShift. Composing these
augmentations, however, provided only limited additional benefit or even hurt performance. A likely
explanation is that the combined perturbations either dilute informative signal or exceed the capacity
of the model to leverage additional invariances in this noisy, small-sample setting. These divergent
outcomes highlight the distinct demands of the two tasks: in healthy tissue, domain identification
profits from invariance to redundant structure, as tissue compartments are relatively stable, whereas
in heterogeneous cancer tissue, phenotype prediction must contend with biological variability and
label uncertainty [21H23]].

Our findings parallel those in image and graph contrastive learning. SimCLR [13]] demonstrated
that augmentation design largely determines representation quality, while BYOL [[14]] and BGRL
[L7] highlighted that not all perturbations are beneficial. GRACE [16] also emphasized the role of
augmentation strategies for graphs. Our results extend these insights to spatial omics: invariances
induced by augmentations must be carefully matched to biological and experimental noise charac-
teristics to improve downstream generalization. This has direct implications for the use of spatial
omics in translational research, where robust embeddings can support tissue diagnostics and patient
stratification.

This study was limited to two downstream tasks and a curated set of augmentations. Domain
identification was based on a small number of annotated healthy tissue samples, constraining statistical
power, while phenotype prediction was restricted to a single cancer cohort. Moreover, the two tasks
differed both in supervision regime and biological complexity, making it difficult to disentangle
whether augmentation effectiveness depends primarily on task type (unsupervised vs. supervised)
or tissue context (healthy vs. cancerous). Future work could address this by including supervised
tasks on healthy tissue and unsupervised tasks on cancer tissue. Beyond these design choices, broader
evaluation on additional omics technologies and clinical endpoints will be important. More extensive
augmentation design could directly support translational use cases such as patient stratification or
treatment response prediction, where robustness to biological noise is critical.

In summary, augmentation design is a critical factor in self-supervised learning on spatial omics
graphs. Effective augmentations encode biologically plausible invariances, improving model robust-
ness and downstream accuracy, while misaligned ones can add cost without benefit. Our results
reinforce the view that augmentation choice is not incidental but a central design decision in graph
contrastive learning.
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A Appendix / supplemental material

A.1 Bootstrapped Graph Latents (BGRL)

Bootstrapped Graph Latents (BGRL) [17]] is a self-supervised graph representation learning method
used in this project. It avoids labels and negative samples by predicting alternate augmentations of
the same input graph.

A graph G = (X, A) is first augmented into two alternate views G; = (X;,A;) and Gy =
(X3, Ay) via graph augmentation functions 77 and 73, respectively. An online encoder & with pa-

rameters 6 then produces an online representation from the first augmented view, I:11 =& (Xl, Al),
and a target encoder £4 with parameters ¢ produces a target representation from the second aug-

mented view, Hy := 5¢(X2, Ag). A prediction of the target representation, Zq = pe(I:Il), is
obtained by feeding the online representation into a node-level predictor py.
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To update the online encoder’s parameters 6, the gradient of the cosine similarity of the predicted
target representation Z, and the true target representation Hs is computed with respect to 6:

N-—1 7 1T
2 Z(Li)H 2,
10,9) = —— HIE{>
(277:)

- (11)
N = HZ(M)

0 < optimize(6, n, 0yl (0, $)). (12)
Here, 7 is the learning rate and in practice, the loss is symmetrized by also predicting the target
representation of the first view with the online representation of the second view.

The target encoder’s parameters ¢ are updated as an exponentially moving average with decay rate 7
of the online encoder’s parameters 6:

o+ T+ (1—1)0. (13)

A.2 Deep Graph Contrastive Representation Learning (GRACE)

Deep Graph Contrastive Representation Learning (GRACE) [[16] is a self-supervised method for
unsupervised graph representation learning. Unlike methods relying on global readouts, GRACE
directly contrasts node-level embeddings across two randomly corrupted views of the same graph.

Formally, given a graph G = (X, A), GRACE generates two augmented views G; = (X1, A;) and

G = (Xa, Az) by applying stochastic corruption functions 77, 75 to features and edges. Specifically,
GRACE uses (i) edge removal with probability p, and (ii) feature masking with probability p,, to
generate diverse contexts.

A shared GNN encoder fy then computes node embeddings U = fy (Xl, Al) and V = fy (Xg, Ag).
For a node i, the embeddings (u;, v;) from the two views form a positive pair, while embeddings
from other nodes act as negatives. The similarity between two embeddings is estimated by a critic

e
OY) = LT a4

where g(+) is a two-layer projection head and the similarity is scaled by a temperature 7.

The contrastive loss for node 7 is defined as
exp(f(u;, v;)/7)

l(u;,v;) = —lo . (15)
i) = 08 800w /) T S exp(O(10,v2)/7) + s b (011 1))
The final symmetric objective averages over all nodes:
1 X
J = ﬁ Zl [E(ui,vi) -+ K(Vi, ul)] . (16)

A.3 Augmentation benchmark

To assess the computational costs associated with different augmentations and combinations of
augmentations, they were applied to synthetic graphs of varying sizes while measuring runtime and
memory usage.

For augmentations relevant to domain identification, synthetic graphs were generated to mimic the
structure of real domain identification data. These graphs consisted of nodes with 50 numerical
features, with feature similarities reflecting group structures, i.e., nodes within a group had more
similar features than those in different groups. For phenotype prediction augmentations, graphs were
designed to contain nodes annotated with a cell type feature and a cell size feature. Additionally,
edges were annotated with a binary indicator distinguishing "near" from "distant" connections.

All individual augmentations applicable to either domain identification or phenotype prediction were
tested on their respective synthetic graph types. Furthermore, combinations of augmentations, corre-
sponding to those evaluated in the main experiments, were also benchmarked. Each augmentation or
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combination was applied to synthetic graphs of increasing size, with each experiment repeated three
times on a single GPU. For each run, both the runtime and peak GPU memory usage were recorded.
The mean values across the three replicates were reported as the final result.

The results for domain identification augmentations are shown in Figure[5] Augmentation modes
using DropImportance exhibit higher runtime compared to baseline augmentations (DropFeatures and
DropEdges) and noise-based augmentations (SpatialNoise and FeatureNoise), though still running
for 1 second or less for all graph sizes. Smoothing exhibits the highest memory usage of all the
augmentations.
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Figure 5: Benchmark of domain identification augmentations. Runtime (left) and peak GPU
memory usage (right) for domain identification augmentations across increasing graph sizes. Each
line represents either an individual augmentation or a combination of augmentations.

The results for phenotype prediction augmentations are shown in Figure[] The runtime scaling trends
are similar to those in the domain identification results. Augmentation modes using DropImportance
scale worse than baseline and noise-based augmentations in both runtime and memory usage.
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Figure 6: Benchmark of phenotype prediction augmentations. Runtime (left) and peak GPU
memory usage (right) for phenotype prediction augmentations across increasing graph sizes. Each
line represents either an individual augmentation or a combination of augmentations.
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Overall, the benchmark highlights substantial variability in the computational efficiency of different
augmentation strategies. Especially more complex augmentations, such as DropImportance and
Smoothing, significantly increase runtime and memory consumption on large graphs, which also
introduces considerable computational overhead during model training.

A.4 Classification metrics

To assess the performance of the phenotype prediction model, several binary classification metrics
were used. These were computed from the predicted logits z € R and the ground truth binary labels
y € {0,1}" for all N samples.

First, the predicted logits were transformed into probabilities using the sigmoid function:

1
0 = = 17
p=o0(z) =7 e (17)
A threshold 7 € [0, 1] was applied to convert probabilities into binary predictions:
y=1I[p > 7] (18)

During validation, the threshold 7 was chosen to maximize the F1 score across a set of candidate
thresholds. Once the optimal threshold was selected, the following metrics were computed:

* AUROC (Area Under the Receiver Operating Characteristic Curve): The AUROC
quantifies the probability that a randomly chosen positive sample is ranked higher than a
randomly chosen negative sample by the model’s scoring function. Formally, if s(x) denotes
the prediction score, then

AUROC = P(s(z*) > s(z7)),

where 7 and 2~ are independent draws from the positive and negative classes, respectively.

Equivalently, AUROC corresponds to the area under the curve tracing the true positive rate
(TPR) against the false positive rate (FPR) as the classification threshold is varied:

_ TP(t) _ FP(1)
~ TP(t) + FN(t)’ FPR(?) = FP(t) + TN(t)’

where TP, FP, TN, FN denote true/false positives/negatives at threshold ¢. A value of 0.5
corresponds to random guessing, while 1.0 indicates perfect class separability.

TPR(t)

* Precision: Fraction of predicted positives that are correct:

TP
Precision = m (19)

* Recall (Sensitivity): Fraction of actual positives that are correctly identified:

TP
Recall = ——— 20
T TPYFN 20

* F1 Score: Harmonic mean of precision and recall, balancing both metrics:

Precision - Recall

Fl =2 2D

" Precision + Recall

A.5 Clustering evaluation metrics

To evaluate the quality of clustering results obtained, three metrics were employed: Normalized
Mutual Information (NMI), Homogeneity, and Completeness. These metrics assess how well the
predicted clustering aligns with ground truth domain labels.

NMI measures the mutual dependence between the predicted clustering C' and the ground truth labels
Y, normalized by the entropy of both. It is defined as:
2-1(CyY)

NMI(C,Y) = HC) + BV

(22)
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where I(C;Y) is the mutual information between C and Y, and H(-) denotes entropy. Mutual
information is given by:

I(C;Y) =) Ple,y)log (]f;gj’%) (23)

ceCyeY

Here, P(c,y) is the joint probability of a sample being in cluster ¢ and class y, while P(c) and P(y)
are the marginal probabilities.

Homogeneity assesses whether each cluster contains only data points that belong to a single class. It
is defined as:
ifHY|C)=0

otherwise 24

1
HOM(C,Y) = {1 _ Hio)
H(Y)
where H (Y |C) is the conditional entropy of the ground truth labels given the cluster assignments,
and H (Y') is the entropy of the ground truth.

Completeness measures whether all members of a given class are assigned to the same cluster. It is
defined as:
ifH(C|Y)=0

25
otherwise (25)

1
COM(C,Y) = {1 _ H(?|Y)
H(C)

where H(C|Y) is the conditional entropy of the predicted cluster assignments given the true class
labels.

A.6 Possible cell type transitions for the PhenotypeShift augmentation

We allow a restricted set of biologically motivated cell type transitions, reflecting known plasticity
and differentiation processes in the tumor microenvironment:

* Tumor adaptation: Tumor cells (normal) can transition to hypoxic tumor states [34].

* Fibroblast (CAF) plasticity: Collagen CAFs may become myofibroblastic CAFs (mCAFs)
or adapt to hypoxia; mCAFs can further switch into SMA™ CAFs, PDPN* CAFs, vascular
CAFs, or hypoxic CAFs; iCAFs can adopt PDPN* or IDO™ states; IDO™ CAFs can also
adapt to hypoxia; tumor-promoting CAFs (tCAFs) can transition to hypoxic tCAFs [35H37].

e CD4™ T cell differentiation: CD4 T cells can give rise to regulatory T cells (Tregs), PD1+
exhausted cells, IDO* subsets, proliferative (Ki67™) states, or TCF1/7+ progenitor-like
cells [38] 39]].

e CD8* T cell differentiation: CD8 T cells can give rise to IDO™ subsets, proliferative
(Ki67%) states, or TCF1/7% progenitor exhausted cells [39} 40Q].

* Myeloid refinement: Myeloid cells can be further refined into neutrophil identities, reflect-
ing annotation resolution rather than a true biological transition [41].

A.7 Hyperparameter ranges used for tuning augmentations
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Table 6: Hyperparameter search ranges for graph augmentations. For each augmentation, the
tuned hyperparameters and their respective ranges are listed. Intervals denote uniform sampling from

the specified range.

Augmentation Hyperparameter Range
DropEdges D [0.1, 0.4]
DropFeatures D [0.1, 0.4]
DropImportance zp {811: 8%
SpatialNoise Tspatial [2.0, 30.0]
FeatureNoise Ofeature [0.05, 1.0]
SmoothFeatures  « [0.0, 0.5]
PhenotypeShift  pgpie [0.0, 0.3]
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